

Seattle, United States 12-16 October 2020

Label Embedding Online Hashing for Cross-Modal Retrieval

Yongxin Wang, Xin Luo, Xin-Shun Xu*

Paper ID: 436

School of Software, Shandong University

Outline

Introduction

Method

- hash codes learning
- hash functions learning
- Experiments
- Conclusion and Future Work

Paper ID: 436

Introduction

Nearest Neighbor Search (NNS)

Underlying many machine learning, and information retrieval, problems.

In the era of big data, traditional NNS methods faces the challenge of slow retrieval speed and expensive storage.

Hashing Methods similarity relationship preserved

binary codes representation

advantages

Introduction

- fast query speed
- Iow storage cost

Actually, data is usually collected in a stream fashion. Batch learning is inefficient.

Online Hashing

- it learns hash functions in an online scenario
- several issues to be address
 - performance is not satisfying
 - ignore the existing data
 - updating scheme is inefficient
 - discrete optimization is still an open issue

Introduction

LEMON: a novel Label EMbedding ONline hashing method

- label embedding
- online learning
- efficient discrete optimization

Method

Notations (at *t*-th round):

- X_m^(t) = [X_m^(t), X_m^(t)] ∈ ℝ^{d_m×N_t} feature matrix of *m*-th modality
 X_m^(t) ∈ ℝ^{d_m×n_t} new data with n_t instances
 X_m^(t) ∈ ℝ<sup>d_m×N_{t-1} old data with N_{t-1} = ∑_{k=1}^{t-1} n_k instances
 L^(t) = [L^(t), L^(t)] ∈ ℝ^{c×N_t} label matrix
 L^(t) ∈ ℝ^{c×n_t} label matrix of new data
 L^(t) ∈ ℝ^{c×N_{t-1}} label matrix of old data
 B^(t) = [B^(t), B^(t)] ∈ ℝ^{r×N_t} unified binary codes
 </sup>
 - **\vec{B}^{(t)}** binary codes of new data
 - **\mathbf{B}^{(t)} binary codes of old data**

Method –Hash codes learning

Label Embedding

binary codes should preserve the semantic similarity

 $\min_{\mathbf{B}^{(t)}} ||\mathbf{B}^{(t)\top}\mathbf{B}^{(t)} - r\mathbf{S}^{(t)}||^2, \ s.t. \mathbf{B}^{(t)} \in \{-1, 1\}^{r \times N_t},$

Iabels could be reconstructed from binary codes

 $\min_{\{\mathbf{B},\mathbf{P}\}^{(t)}} \| \mathbf{L}^{(t)} - \mathbf{P}^{(t)} \mathbf{B}^{(t)} \|^{2} + \gamma \| \mathbf{P}^{(t)} \|^{2}, \ s.t. \ \mathbf{B}^{(t)} \in \{-1,1\}^{r \times N_{t}},$

jointly considering above functions

$$\min_{\{\mathbf{B},\mathbf{P}\}^{(t)}} \alpha || \mathbf{B}^{(t)\top} \mathbf{B}^{(t)} - r \mathbf{S}^{(t)} ||^2 + \beta || \mathbf{L}^{(t)} - \mathbf{P}^{(t)} \mathbf{B}^{(t)} ||^2 + \beta \gamma || \mathbf{P}^{(t)} ||^2, \ s.t. \ \mathbf{B}^{(t)} \in \{-1,1\}^{r \times N_t},$$

ΜΜΑ

Method –Hash codes learning

a define a block similarity matrix $\mathbf{S}^{(t)} = \begin{bmatrix} \mathbf{S}_{oo}^{(t)} & \mathbf{S}_{oc}^{(t)} \\ \mathbf{S}_{co}^{(t)} & \mathbf{S}_{cc}^{(t)} \end{bmatrix}$, $\mathbf{S}^{(t)} = 2\mathbf{U}^{(t)\top}\mathbf{U}^{(t)} - \mathbf{11}^{\top}$, $\mathbf{U}^{(t)}$ is the 2-norm normalized label matrix **a** keep $\mathbf{B}^{(t)}$ unchanged and only update $\vec{\mathbf{B}}^{(t)}$ $\min_{\{\vec{\mathbf{B}},\mathbf{P}\}^{(t)}} \alpha ||\vec{\mathbf{B}}^{(t)\top}\mathbf{B}^{(t)} - r\mathbf{S}_{co}^{(t)}||^2 + \alpha ||\vec{\mathbf{B}}^{(t)\top}\vec{\mathbf{B}}^{(t)} - r\mathbf{S}_{cc}^{(t)}||^2$ $+\beta ||\vec{\mathbf{L}}^{(t)} - \mathbf{P}^{(t)}\vec{\mathbf{B}}^{(t)}||^2 + \beta ||\mathbf{L}^{(t)} - \mathbf{P}^{(t)}\mathbf{B}^{(t)}||^2 + \beta\gamma ||\mathbf{P}^{(t)}||^2$, $s.t.\vec{\mathbf{B}}^{(t)} \in \{-1,1\}^{rxn_t}$. **a** solve update-imbalance problem

$$\min_{\{\vec{\mathbf{B}},\vec{\mathbf{V}},\mathbf{P},\mathbf{R}\}^{(t)}} \underline{\alpha} \| \vec{\mathbf{V}}^{(t)\top} \mathbf{B}^{(t)} - r\mathbf{S}_{co}^{(t)} \|^{2} + \alpha \| \mathbf{V}^{(t)\top} \vec{\mathbf{B}}^{(t)} - r\mathbf{S}_{oc}^{(t)} \|^{2} + \alpha \| \vec{\mathbf{V}}^{(t)\top} \vec{\mathbf{B}}^{(t)} - r\mathbf{S}_{cc}^{(t)} \|^{2} + \beta \| \mathbf{L}^{(t)} - \mathbf{P}^{(t)} \mathbf{V}^{(t)} \|^{2} + \beta \gamma \| \mathbf{P}^{(t)} \|^{2} + \| \vec{\mathbf{B}}^{(t)} - \mathbf{R}^{(t)} \vec{\mathbf{V}}^{(t)} \|^{2} + \| \mathbf{B}^{(t)} - \mathbf{R}^{(t)} \mathbf{V}^{(t)} \|^{2}, s.t. \vec{\mathbf{B}}^{(t)} \in \{-1,1\}^{r \times n_{t}}, \mathbf{R}^{(t)} \mathbf{R}^{(t)\top} = \mathbf{I}, \mathbf{V}^{(t)} \mathbf{V}^{(t)\top} = n_{t} \mathbf{I}, \mathbf{V}^{(t)} \mathbf{I} = \mathbf{0}.$$

Online Learning

ΜΜΑ

Method –Hash codes learning

Efficient Discrete Optimization

alternatively and iteratively update $\{\vec{B}, \vec{V}, P, R\}^{(t)}$

auxiliary variables $C_*^{(t-1)}$

Method –Hash functions learning

Hash Mapping: linear regression

$$\min_{\mathbf{W}_m^{(t)}} ||\mathbf{B}^{(t)} - \mathbf{W}_m^{(t)} \mathbf{X}_m^{(t)} ||^2 + \xi ||\mathbf{W}_m^{(t)} ||^2,$$

• Online Learning: $\mathbf{B}^{(t)} = [\mathbf{B}^{(t)}, \vec{\mathbf{B}}^{(t)}]$

$$\min_{\mathbf{W}_{m}^{(t)}} ||\mathbf{B}^{(t)} - \mathbf{W}_{m}^{(t)} \mathbf{X}_{m}^{(t)} ||^{2} + ||\mathbf{B}^{(t)} - \mathbf{W}_{m}^{(t)} \mathbf{X}_{m}^{(t)} ||^{2} + \xi ||\mathbf{W}_{m}^{(t)} ||^{2}$$

Efficient Optimization

auxiliary variables $\mathbf{H}_{*}^{(t-1)}$ and $\mathbf{F}_{*}^{(t-1)}$

• Out-of-Sample:
$$H_m^{(t)}(\mathbf{x}_m) = \operatorname{sign}(\mathbf{W}_m^{(t)}\mathbf{x}_m)$$
.

Step-1: hash codes learning $<math display="block"> \min_{\{\vec{\mathbf{B}},\vec{\mathbf{V}},\mathbf{P},\mathbf{R}\}^{(t)}} \alpha ||\vec{\mathbf{V}}^{(t)^{\top}} \mathbf{B}^{(t)} - r\mathbf{S}_{co}^{(t)}||^{2} + \alpha ||\mathbf{V}^{(t)^{\top}} \vec{\mathbf{B}}^{(t)} - r\mathbf{S}_{oc}^{(t)}||^{2} + \alpha ||\vec{\mathbf{V}}^{(t)^{\top}} \vec{\mathbf{B}}^{(t)} - r\mathbf{S}_{cc}^{(t)}||^{2}$ $+ \beta ||\vec{\mathbf{L}}^{(t)} - \mathbf{P}^{(t)} \vec{\mathbf{V}}^{(t)}||^{2} + \beta ||\mathbf{L}^{(t)} - \mathbf{P}^{(t)} \mathbf{V}^{(t)}||^{2} + \beta \gamma ||\mathbf{P}^{(t)}||^{2}$ $+ ||\vec{\mathbf{B}}^{(t)} - \mathbf{R}^{(t)} \vec{\mathbf{V}}^{(t)}||^{2} + ||\mathbf{B}^{(t)} - \mathbf{R}^{(t)} \mathbf{V}^{(t)}||^{2}, s.t. \vec{\mathbf{B}}^{(t)} \in \{-1,1\}^{r \times n_{t}}, \mathbf{R}^{(t)} \mathbf{R}^{(t)^{\top}} = \mathbf{I}, \vec{\mathbf{V}}^{(t)} \vec{\mathbf{V}}^{(t)^{\top}} = n_{t} \mathbf{I}, \vec{\mathbf{V}}^{(t)} \mathbf{I} = \mathbf{0}.$

Step-2: hash functions learning $\min_{\mathbf{W}_{m}^{(t)}} || \mathbf{B}^{(t)} - \mathbf{W}_{m}^{(t)} \mathbf{X}_{m}^{(t)} ||^{2} + || \vec{\mathbf{B}}^{(t)} - \mathbf{W}_{m}^{(t)} \vec{\mathbf{X}}_{m}^{(t)} ||^{2} + \xi || \mathbf{W}_{m}^{(t)} ||^{2}.$ (2)

• Out-of-Sample:
$$\mathbf{b}_{query} = H_m^{(t)}(\mathbf{x}_m) = \operatorname{sign}(\mathbf{W}_m^{(t)}\mathbf{x}_m).$$
 (3)

Retrieval: $\mathbf{b}_{query} \xrightarrow{\text{hamming distance}} \mathbf{B}^{(t)}$

Datasets

MIRFlickr-25K

Experiments

- IAPR TC-12
- NUS-WIDE
- Compared Methods
 - offline methods: SCM-seq, DCH, LCMFH, SCRATCH, DLFH
 - online methods: OCMH, OLSH
- Evaluation Metrics
 - Mean Average Precision (MAP), and Training Time

The MAP results of all methods on MIRFlickr-25K

Task	Method	8-bit	16-bit	32-bit	64-bit	128-bit
$I \rightarrow T$	SCM-seq	0.6307	0.6457	0.6455	0.6629	0.6148
	DCH	0.6739	0.7093	0.6774	0.7219	0.7424
	LCMFH	0.6796	0.6750	0.6896	0.6898	0.7002
	SCRATCH	0.6870	0.7084	0.7136	0.7234	0.7256
	DLFH	0.7102	0.7076	0.7182	0.7188	0.7254
	OCMH	0.5484	0.5515	0.5578	0.5565	0.5536
	OLSH	0.5791	0.5778	0.6008	0.5971	0.5935
	LEMON	0.7272	0.7258	0.7476	0.7474	0.7485
$T \rightarrow I$	SCM-seq	0.6151	0.6257	0.6245	0.6512	0.6010
	DCH	0.7388	0.7649	0.7410	0.7786	0.8010
	LCMFH	0.7332	0.7293	0.7528	0.7627	0.7740
	SCRATCH	0.7446	0.7692	0.7727	0.7810	0.7877
	DLFH	0.7235	0.7836	0.8066	0.8225	0.8285
	OCMH	0.5500	0.5530	0.5547	0.5565	0.5533
	OLSH	0.5801	0.5829	0.6094	0.6038	0.6024
	LEMON	0.7924	0.8166	0.8238	0.8298	0.8327

Experiments

14

MAP

The MAP results of all methods on IAPR TC-12

Task	Method	8-bit	16-bit	32-bit	64-bit	128-bit
	SCM-seq	0.3479	0.4047	0.4320	0.4444	0.3917
	DCH	0.4664	0.4825	0.4867	0.5061	0.5203
	LCMFH	0.4197	0.4359	0.4480	0.4626	0.4688
	SCRATCH	0.4449	0.4588	0.4831	0.4949	0.4955
$I \to T$	DLFH	0.3505	0.3415	0.3390	0.3644	0.3913
-	OCMH	0.3037	0.3105	0.3069	0.3046	0.3064
	OLSH	0.3457	0.3335	0.3639	0.3486	0.3617
	LEMON	0.4730	0.4998	0.5138	0.5318	0.5431
	SCM-seq	0.3108	0.3532	0.4014	0.4077	0.3624
	DCH	0.5109	0.5444	0.5720	0.5948	0.6243
	LCMFH	0.4508	0.4977	0.5181	0.5424	0.5598
	SCRATCH	0.4984	0.5385	0.5784	0.6052	0.6201
$T \rightarrow I$	DLFH	0.3784	0.4170	0.4992	0.5742	0.6174
	ОСМН	0.3028	0.3099	0.3062	0.3048	0.3064
	OLSH	0.3479	0.3354	0.3685	0.3565	0.3683
	LEMON	0.5348	0.5822	0.6197	0.6519	0.6708

Experiments

------SCM-seq

DCH

DLFH

-OCMH

- OLSH

LEMON

7 8

-SCM-seq

DCH

SCRATCH

DLFH

- OCMH

-OLSH

- LEMON

8

9

15

7

6

9

6

- SCRATCH

School of Software, Shandong University

0.65

The MAP results of all methods on NUS-WIDE

Task	Method	8-bit	16-bit	32-bit	64-bit	128-bit
$I \rightarrow T$	SCM-seq	0.4636	0.4324	0.5045	0.4941	0.4941
	DCH	0.6309	0.6076	0.5714	0.5835	0.5937
	LCMFH	0.5903	0.6047	0.6353	0.6354	0.6371
	SCRATCH	0.6116	0.6184	0.6413	0.6487	0.6468
	DLFH	0.5789	0.6211	0.6519	0.6617	0.6684
	OCMH	0.3447	0.3411	0.3491	0.3429	0.3439
	OLSH	0.4872	0.5162	0.5243	0.5368	0.5270
	LEMON	0.6389	0.6579	0.6672	0.6711	0.6700
$T \rightarrow I$	SCM-seq	0.4812	0.4536	0.5276	0.5253	0.5286
	DCH	0.7615	0.7419	0.6868	0.7110	0.7349
	LCMFH	0.6807	0.7275	0.7455	0.7549	0.7552
	SCRATCH	0.7241	0.7567	0.7673	0.7853	0.7893
	DLFH	0.6779	0.7736	0.8066	0.8071	0.8140
	ОСМН	0.3454	0.3420	0.3539	0.3417	0.3436
	OLSH	0.5167	0.5594	0.5648	0.5920	0.5804
	LEMON	0.7778	0.7946	0.8122	0.8288	0.8333

Image-to-Text @ 8-bit

Experiments

MIMA

Training time (log2 seconds) and efficiency on MIRFlickr-25K

For more results, please refer to our paper.

Conclusion and Future work

- A novel label embedding online hashing method, i.e., LEMON.
 - capturing the semantic structure by label embedding
 - performing online learning via a block similarity matrix
 - efficient and discrete optimization
- Future Work
 - deep-to-deep
 - semi-supervised

Seattle, United States 12-16 October 2020

Thank You!

Any Question?

Yongxin Wang: yxinwang@hotmail.com

